Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics.
نویسندگان
چکیده
We report a general computational model of complex material media for electrodynamics simulation using the Finite-Difference Time-Domain (FDTD) method. It is based on a multi-level multi-electron quantum system with electron dynamics governed by Pauli Exclusion Principle, state filling, and dynamical Fermi-Dirac Thermalization, enabling it to treat various solid-state, molecular, or atomic media. The formulation is valid at near or far off resonance as well as at high intensity. We show its FDTD application to a semiconductor in which the carriers' intraband and interband dynamics, energy band filling, and thermal processes were all incorporated for the first time. The FDTD model is sufficiently complex and yet computationally efficient, enabling it to simulate nanophotonic devices with complex electromagnetic structures requiring simultaneous solution of the mediumfield dynamics in space and time. Applications to direct-gap semiconductors, ultrafast optical phenomena, and multimode microdisk lasers are illustrated.
منابع مشابه
Finite-difference time-domain model of lasing action in a four-level two-electron atomic system.
We report a new finite-difference time-domain (FDTD) computational model of the lasing dynamics of a four-level two-electron atomic system. Transitions between the energy levels are governed by coupled rate equations and the Pauli Exclusion Principle. This approach is an advance relative to earlier FDTD models that did not include the pumping dynamics, or the Pauli Exclusion Principle. Further,...
متن کاملtic s ] 7 M ay 2 01 5 Quantitative test of general theories of the intrinsic laser linewidth
We perform a first-principles calculation of the quantum-limited laser linewidth, testing the predictions of recently developed theories of the laser linewidth based on fluctuations about the known steady-state laser solutions against traditional forms of the Schawlow-Townes linewidth. The numerical study is based on finite-difference time-domain simulations of the semiclassical Maxwell-Bloch l...
متن کاملOn the Diffusion limit of a semiconductor Boltzmann-Poisson system without micro-reversible process
This paper deals with the diffusion approximation of a semiconductor BoltzmannPoisson system. The statistics of collisions we are considering here, is the Fermi-Dirac operator with the Pauli exclusion term and without the detailed balance principle. Our study generalizes, the result of Goudon and Mellet [14], to the multi-dimensional case. keywords: Semiconductor, Boltzmann-Poisson, diffusion a...
متن کاملA multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2006